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Transverse oscillations of a cylinder in a viscous #uid generate a force on the #uid that
becomes non-linear at large oscillation amplitudes. When the cylinder motion is sinusoidal,
non-linearity produces odd order harmonic distortion in the force. Numerical simulations
based on the incompressible Navier}Stokes equations are used to explore (1) departures
from linear theory and (2) the approach to quasi-steady behaviour, for oscillations over
a wide frequency range at peak Reynolds numbers between 10~2 and 10. Non-linearity
appears once the displacement amplitude becomes comparable with the viscous penetration
depth at the oscillation frequency. The results provide insight into the attenuation of sound
in air-"lled "brous materials, where non-linear behaviour has been observed at sound
pressure levels around 150 dB and upwards (see the paper by H.L. Kuntz and D.T.
Blackstock 1987 Journal of the Acoustical Society of America 81, 1723}1731 [3]).

( 2001 Academic Press
1. INTRODUCTION

A long circular cylinder oscillating transversely in a viscous #uid at rest applies an unsteady
force to the #uid. A similar situation occurs when a "xed cylinder is placed in a plane-wave
sound "eld, with its axis normal to the propagation direction. Provided the cylinder
diameter, d, is small compared with the acoustic wavelength at the oscillation frequency, the
forces in the two situations are closely related (as described in section 1.1), and can be
calculated analytically in the small-amplitude limit [1, 2; see also Appendix A].

However, non-linear phenomena*including streaming and, eventually, turbulence*
begin to in#uence the unsteady drag as the oscillation amplitude is increased. In this paper,
a numerical boundary element method will be used to explore the onset of non-linearity for
a sinusoidally oscillating cylinder, under conditions of laminar #ow.

1.1. BACKGROUND AND MOTIVATION

Apart from its fundamental interest as an unsolved problem in #uid #ow, the question of
when and how the linear drag approximation breaks down has a practical motivation in
acoustics, since the attenuation of sound by "brous absorbing materials is known to
0022-460X/01/390705#17 $35.00/0 ( 2001 Academic Press



706 C. L. MORFEY AND M. TAN
become non-linear at large amplitudes [3, 4]: this typically occurs at sound pressure levels
in air above 150 dB re (20 kPa)2. Non-linearity of the hydrodynamic force on a single
cylindrical "bre is an obvious mechanism of non-linear attenuation.

The parameter range of the present study matches typical sound-absorption applications.
It is con"ned to low Reynolds numbers (R)10), where R is the oscillatory Reynolds
number based on the peak velocity v

max
:

R"

ov
max

d

k
(o"#uid density, k"viscosity). (1)

The frequency range is limited to low Stokes numbers based on cylinder diameter (S[3):

S"
oud2

k
"2 A

d

dB
2

(angular frequency u"2nf; d"J2l/u ; l"k/o). (2)

For a cylinder of diameter 15 km in air (at 153C, 1 atm), R"1 corresponds to a velocity
amplitude of 1 m/s, while S"1 corresponds to an oscillation frequency of 10 kHz. One
outcome of the study is that as S is increased with R held constant, the #uid loading moves
closer to linear theory (as will be demonstrated below).

In what follows, the cylinder is assumed to oscillate with velocity v(t) is a stationary
viscous #uid of in"nite extent. The #uid is modelled as incompressible, which means that the
results apply in the combined limit of low Mach number (v

max
/c@1, where v

max
is the peak

velocity and c is the speed of sound) and low Helmholtz number (ud/c"2nd/j@1). Once
the unsteady drag is known for this case, it can easily be generalized to the case of a cylinder
in a uniformly accelerating #uid, by using the equivalence relation for incompressible #ow
[5]. This states that the relative #ow "eld around any rigid body moving with velocity V(t),
in a time-varying uniform stream whose velocity at in"nity is U(t), is identical at every
instant to the #ow "eld around the same body as it moves with velocity V(t)!U (t) through
the same #uid at rest. The unsteady forces FU (t), F

0
(t) exerted by the body on the #uid in the

two cases are related by

FU (t)"F
0
(t)!m

displ
U0 (t), (3)

where m
displ

is the mass of #uid that the body displaces and UQ (t) is the #uid acceleration at
in"nity. Note that because the correction term is linear in U (t), it makes no contribution to
the non-linear drag e!ects discussed below. A list of nomenclature is given in Appendix D.

1.2. COMPARISONS AVAILABLE FROM PREVIOUS STUDIES

The two-dimensional #ow round a circular cylinder oscillating transversely in a viscous
incompressible #uid can be solved exactly in two limiting cases: (1) oscillations of small
amplitude, de"ned by the limit RP0, with S "xed: here the drag is given by linearized
theory as described in Appendix A; (2) oscillations at "nite but low Reynolds numbers
(R(10), in the low-frequency limit de"ned by SP0, with R "xed; here inertial e!ects are
small, and the #ow is quasi-steady relative to the cylinder. The known solutions for the drag
in these two cases are used in section 3 as benchmarks, in order to validate the numerical
results obtained for "nite (R, S).

An important objective is to explore under what circumstances each of these limiting
solutions provides a good approximation to the drag. The answers are given for case (1) in
section 3.2, and for case (2) in section 3.3. It turns out that the respective domains of
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sNote that our parameters (R, S) are denoted by the symbols (R, RS) in reference [8]. Wang's symbol S (for
Strouhal number) corresponds to our 1/K, where K is the amplitude parameter introduced in equation (8).

approximate validity, expressed in a suitable non-dimensional parameter space, have no
overlap. For a "xed Reynolds number, the linear solution is approached in the
high-frequency limit, and the quasi-steady solution is approached in the low-frequency limit.

Our literature research revealed no published experiments or numerical studies on
cylinder drag whose parameter ranges overlap with the present investigation. However,
extensive experimental and numerical work has been done [6, 7] on the special case dPR

(or in dimensionless terms, SPR), which corresponds locally to an in"nite #at plate
oscillating in its own plane next to a semi-in"nite viscous #uid. Flat-plate experiments,
using single-frequency excitation, show that the oscillatory #ow remains laminar as long as
the peak boundary displacement m

max
does not exceed 250d. Transition to turbulence*in

the form of transient turbulent bursts, that develop explosively during the deceleration
phase of each cycle and disappear during the acceleration phase*has been observed to
occur in the #at-plate Stokes boundary layer within the range of amplitudes

250(m
max

/d(285 (equivalent to 500(v
max

d/l(570). (4)

In terms of the parameters R and S for #ow around an oscillating cylinder, equation (4)
means that turbulent transition in the large-S (or #at-plate) limit occurs in the range

0)13]104(R2/S(0)16]104. (5)

Despite the very di!erent Stokes number range of the present study (S[3, as opposed
to SPR), the same parameter R2/S ("ov

max
2/uk) will be shown to be signi"cant for the

present oscillating-cylinder problem*not in determining transition, but in determining the
onset of non-linearity.

Finally, a review by Wang [8] of work prior to 1968 noted that in the laminar regime,
non-linear corrections to the linear #ow solution can be calculated by asymptotic methods
for R2/S@1, but that such corrections are typically limited to a small part of the (R, S)
parameter spaces. Published solutions are mostly directed at the steady streaming
component; the only non-linear corrections available for the oscillatory-drag problem are
for SA1 (where an oscillatory boundary layer exists around the cylinder; results for this case
are given in reference [8]). The method of successive approximations, used by Holtsmark
et al. [9] to investigate streaming for arbitrary S, could be used to give the drag; but for that
purpose it would need to be carried at least to third order in the amplitude. Unfortunately,
the study by Holtsmark et al. [9] stops at the second order approximation.

2. DIMENSIONLESS PARAMETERS AND SCALING

For maximum generality, dimensionless variables are used in this study. The
instantaneous force f (t) per unit length exerted by an in"nite cylinder on the surrounding
#uid, when the cylinder oscillates transversely at angular frequency u with peak velocity
v
max

, depends on the parameters (v
max

, u, k, o, d). Since f (t) is expected to scale linearly on
v
max

at small amplitudes, it is convenient to normalize the instantaneous force as follows:

f (t)

v
max

"/(t, v
max

, u, k, o, d ). (6)
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tNote that allowing the #uid to be compressible would require introduction of a further parameter, such as the
Helmholtz number N or alternatively the Mach number M"KN. However, provided M@1 as well as N@1, the
incompressible model provides a good approximation for acoustical purposes (as noted in section 1.1).

Here / is an unknown periodic function, to be determined numerically. Expressing
equation (6) in dimensionless form requires four dimensionless groups, one of which is
chosen as f (t)/kv

max
. Fourier analysis with respect to q, the dimensionless time measured in

cycles, then yields

f (t)

kv
max

"ReMH
1
e+2nq#H

2
e+4nq#2N"ReG

=
+
n/1

H
n
e+2nnqH ; (7)

the phase and amplitude of each force harmonic are described here by the complex
coe$cients H

n
.

The dimensionless force coe$cients H
n
(n"1, 2, 3, 2) depend on two dimensionless

parameters,t which are chosen as S and K ("R/S). Both have a physical interpretation. The
parameter K, given by

K"

v
max
ud

, (8)

is the ratio of the oscillation amplitude to the cylinder diameter; 2nK is sometimes called the
Keulegan}Carpenter number. The frequency parameter S is a measure of the cylinder
diameter in terms of the Stokes layer thickness d; from equation (2),

S"2(d/d)2, d"J2l/u (l"kinematic viscosity k/o). (9)

When S is much greater than 1, the Stokes layer is thin on the scale of the cylinder
diameter, and boundary-layer approximations are appropriate. However, it will be shown
that over the entire Reynolds number range 0)01)R)10, the cylinder drag becomes
signi"cantly non-linear only at low frequencies such that S is less than R2. The non-linear
phenomena of this paper therefore lie outside the scope of boundary-layer theory.

3. NUMERICAL RESULTS FOR OSCILLATORY DRAG

3.1. SCOPE OF THE NUMERICAL STUDY

Figure 1 shows the region of K}S space investigated. It is bounded by the diagonal lines
marked R"10 and 0)01 on the log}log plot; these are the upper and lower Reynolds
number limits.

At each of the 26 numbered points in Figure 1, the simulated #ow was run to a steady
state as described in Appendix B (where a brief account of the numerical method may be
found). In a post-processing operation, the dimensionless force harmonics H

n
de"ned in

equation (7)*with magnitudes h
n
*were extracted from the "nal cycle of force data. Points

0}21 were "lled in progressively, the main criterion being to cover the region of signi"cant
non-linearity. Four extra points (numbered 22}25) were added in the bottom right corner,
to provide a comparison with the quasi-steady approximation.

Note that symmetry requires that the even force harmonics be zero, in the absence of
a bias #ow. (Although one can imagine symmetry being broken at high Reynolds numbers
by the onset of chaos, or by sensitivity to initial conditions, such behaviour is not expected



Figure 1. The combinations of amplitude parameter K and dimensionless frequency S used in the
computational study. Diagonal lines correspond to "xed values of R, the peak oscillatory Reynolds number.
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for R)10 and was not observed.) Departures from linearity are examined in section 3.2,
and convergence with linear theory is demonstrated as K is reduced for constant S.
Section 3.3 is focused on departures from quasi-steady drag behaviour, and demonstrates
convergence with quasi-steady predictions as S is reduced for "xed R; the convergence
criterion is interpreted physically in section 3.4. Finally, a summary of numerical results is
presented in section 3.5 for the odd-harmonic amplitudes h

n
(n"1}7). An approximate

collapse of the harmonic-distortion amplitudes, covering the range 0)01)R)10, is
demonstrated by plotting against the parameter R2/S.

3.2. CONVERGENCE WITH LINEAR THEORY IN THE SMALL-AMPLITUDE LIMIT

As an illustration of how the computed h
1

value approaches linear theory as the
amplitude parameter K is reduced, Figure 2 shows h

1
plotted versus K for a "xed S of 10~3;

the linear-theory prediction is shown by the broken line. Convergence of the full numerical
result with the analytical prediction provides evidence that the code is working correctly;
the di!erence is less than 1)5 parts per thousand at K"10 (i.e., at point 9 in Figure 1). At
the other extreme (K"1000, corresponding to R"1), h

1
is almost twice its linear value.

The onset of non-linearity between K"10 and 100 is apparent in this plot.
An alternative presentation of the same data appears in Figure 3. Here the focus is placed

on departures from the linear analytical solution h
a
, by plotting the di!erence Dh

1
!h

a
D on

a logarithmic scale. The accompanying panels show the higher odd harmonics (3, 5, and 7),
for which linearized theory gives zero amplitude.

Note the numerical &&noise #oor'' that appears in the "fth and seventh harmonic results
for small K; this limits the dynamic range to a factor of 106, meaning that h

n
values smaller

than 10~6h
1

are beyond the reach of the present calculation. There is also evidence in
Figure 3 of higher-harmonic saturation at large amplitudes.



Figure 2. Comparison between the non-linear boundary element method and the linearized analytical solution,
for the fundamental amplitude of the dimensionless force at Stokes number S"10~3: , computed values,
domain terms not included; - - - - - -, analytical solution.

Figure 3. Departures from the linearized solution for the oscillatory force, plotted as a function of the amplitude
parameter K for Stokes number S"10~3: ], full non-linear solution; h, solution without domain terms.
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3.3. CONVERGENCE WITH STEADY FLOW IN THE LOW-FREQUENCY LIMIT

The drag coe$cient for steady incompressible #ow past a circular cylinder has previously
been computed [10] over a range of Reynolds numbers of order 1, using the same BEM
code described in Appendix B. The results converge to the analytical Oseen solution of
Tomotika and Aoi [11, 12] in the limit R

mean
P0, where R

mean
";d/l is the steady--ow

Reynolds number. The cylinder drag coe$cient, de"ned as

C
D
(R

mean
)"f /(1

2
o;2d) ( f"drag/unit length; v"relative velocity), (10)

is given in reference [10] as

C
D
(R

mean
)"A

8n
R

mean
B

1!0)036p#0)303p lnp
I
0
(p)K

0
(p)#I

1
(p)K

1
(p)

, (11)

where p equals R
mean

/4. The factor (8n/R
mean

) (I
0
K

0
#I

1
K

1
)~1 above, involving the

modi"ed Bessel functions I and K, is the asymptotic result [11, 12] for R
mean

@1; the
remaining factor is a residual correction for "nite R

mean
, obtained from steady-#ow

numerical calculations for R
mean

"0)1 (0)1)1)0 by curve-"tting.
As the oscillation frequency is reduced, the #ow round the oscillating cylinder is expected

to become quasi-steady. Speci"cally, in the limit de"ned by SP0, with KS"R held
constant, the instantaneous force corresponding to a cylinder velocity v

max
cosut should

follow the steady-#ow relation at every instant:

f (t)"1
2

ov
max

2 dC
D
(R cosut)cos2ut , (12)

or in dimensionless form

f (q)
kv

max

"

1

2
R C

D
(R cos 2nq)cos2 2nq . (13)

By using equation (11) for C
D

and evaluating equation (13) over a complete cycle, the
dimensionless drag harmonic amplitudes h

n
can be found in the quasi-steady limit. Figure 4

shows how each of the computed harmonic amplitudes h
n

(n"1, 3, 5, 7) converges to its
long-period limiting value h

n=
. The ratios h

n
/h

n=
are plotted versus S, for R"0)1 and 1; in

the limit SP0, h
n
/h

n=
tends towards unity. This agreement provides a second benchmark

check on the BEM code. Convergence within 5% for h
1

appears to require S/R2(10~4, or
equivalently K2S'104.

3.4. PHYSICAL INTERPRETATION OF THE QUASI-STEADY DRAG CRITERION

One can express the criterion K2S'104 as follows, with m
max

used to denote the
amplitude of the cylinder displacement and d denoting the viscous di!usion length scale

J2l/u:

m
max

'70d, or equivalently d'
140

R
d. (14)

This dimensional version of the quasi-steady drag criterion has clear physical implications.
When K2S exceeds 104, the cylinder displacement m

max
is much greater than the di!usion

length d, and the di!usion length (for R)10) is much greater than the cylinder diameter d.
Under these conditions, convection of vorticity relative to the cylinder is far more powerful



Figure 4. Demonstration of the approach of odd-harmonic force amplitudes to their quasi-steady limiting
values, as S tends to zero for "xed R: £, R"1; L, R"0)1.
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AThe time scale on which the in#uence of the convected vorticity disappears is of order 2nd/v
max

. This represents
a fraction 1/K of a cycle, which is necessarily a small number (less than 10~3) since K2S'104 and KS)10.

than vorticity di!usion. Once vorticity has been generated by viscous action close to the
cylinder, it is quickly swept many diameters downstream, and the past history of the #ow is
forgotten within a small fraction of one oscillation period.A If follows that the instantaneous
force applied to the #uid is virtually the same at every instant as if the cylinder were in
steady motion.

3.5. SUMMARY OF NUMERICAL RESULTS FOR UNSTEADY DRAG

Table 1 presents harmonic-amplitude data h
n

(n"1, 3, 5, 7) for all the (K, S)
combinations shown in Figure 1. Also shown are h

1
from linear theory, denoted by h

a
, and

the di!erence Dh
1
!h

a
D. Note that in the quasi-steady limit (SP0), h

a
tends to zero (as can

be veri"ed from Appendix A).

3.5.1. Empirical collapse of non-linear harmonic amplitudes

A quantitative measure of the drag non-linearity is provided by the following
dimensionless ratios:

(Fundamental) Dh
1
!h

a
D/h

a
"e

1
; (higher harmonics, n'1) h

n
/h

a
. (15)



TABLE 1

Dimensionless harmonic amplitudes of the cylinder force. For each of the points in Figure 1, the dimensionless amplitudes h
1
, h

3
, h

5
, h

7
were computed directly

using the BEM code; blank entries arise where the harmonic component was too small relative to the numerical noise to allow an accurate determination. For the
quasi-steady calculations at R"1)0 and 0)1, dimensionless harmonic amplitudes were obtained by Fourier analysis of the force}time history calculated from

equations (11) and (13).

Point log
10

K log
10

S R h
a

Dh
1
!h

a
D h

1
h
3

h
5

h
7

Parametric study data
0 0)0 #0)0 1)0 11)072 0)1308 11)203 0)0261 0)0001 *

1 0)5 #0)5 10)0 17)153 4)7861 21)939 0)8480 0)0870 0)0083
2 0)5 #0)0 J10 11)072 1)3230 12)395 0)2271 0)0085 0)0003
3 0)5 !0)5 1)0 7)8265 0)3263 8)1528 0)0529 0)0007 *

4 1)0 #0)0 10)0 11)072 6)3421 17)414 0)9770 0)1527 0)0412
5 1)0 !0)5 J10 7)8265 2)1513 9)9778 0)3470 0)0269 0)0051
6 1)0 !1)0 1)0 5)9287 0)6604 6)5891 0)1124 0)0038 0)0001
7 1)0 !1)5 J0)1 4)7272 0)1700 4)8972 0)0279 0)0003 *

8 1)0 !2)0 0)1 3)9139 0)0367 3)9506 0)0070 0)0001 *

9 1)0 !3)0 0)01 2)8989 0)0035 2)8954 0)0005 * *

10 1)5 !0)5 10)0 7)8265 7)6306 15)457 1)2509 0)1162 0)0422
11 1)5 !1)0 J10 5)9287 2)9825 8)9112 0)5222 0)0542 0)0070

12 1)5 !2)5 0)1 3)3328 0)0944 3)4272 0)0159 0)0002 *

13 2)0 !1)0 10)0 5)9287 8)5106 14)439 1)3748 0)2193 0)0650
14 2)0 !1)5 J10 4)7272 3)5841 8)3113 0)5865 0)0939 0)0026
15 2)0 !2)0 1)0 3)9139 1)4567 5)3706 0)2531 0)0305 0)0061

16 2)0 !3)0 0)1 2)8989 0)2006 3)0995 0)0343 0)0012 *

17 2)0 !4)0 0)01 2)2969 0)0154 2)3123 0)0027 * *

18 2)5 !3)0 J0)1 2)8989 0)8221 3)7210 0)1402 0)0177 0)0035
19 3)0 !3)0 1)0 2)8989 2)1595 5)0584 0)3196 0)0614 0)0205

20 3)0 !4)0 0)1 2)2969 0)5249 2)8218 0)0867 0)0119 0)0027
21 3)0 !5)0 0)01 1)9004 0)1018 2)0022 0)0158 0)0006 0)0001
22 4)0 !4)0 1)0 2)2969 2)6628 4)9597 0)3443 0)0737 0)0289
23 4)0 !5)0 0)1 1)9004 0)8312 2)7316 0)1102 0)0239 0)0086

24 5)0 !5)0 1)0 1)9004 3)0724 4)9728 0)3571 0)0774 0)0317
25 5)0 !6)0 0)1 1)6201 1)0789 2)6990 0)1178 0)0287 0)0121

Quasi-steady state data
* * * 0)1 * * 2)7982 0)1264 0)0328 0)0146
* * * 1)0 * * 4)9350 0)3653 0)0769 0)0329
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Figure 5. Harmonic-distortion amplitudes normalized on the fundamental amplitude h
a
from linearized theory,

showing how the data for all the available (K, S) combinations tend to collapse as a function of K2S: #, R"10;
], R"J10; £, R"1; n, R"J0)1; L, R"0)1; h, R"0)01.
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The data in Table 1 show a monotonic increase in these ratios as K increases, for a given S;
what is less obvious, until the data are plotted as in Figure 5, is that they tend to collapse on
the parameter K2S. Di!erent symbols in Figure 5 label di!erent Reynolds numbers R; note
that all the data points in Figure 1 are included in the plots, except where the harmonic
amplitude was too small to resolve numerically. Although the collapse is not perfect, it
o!ers a useful guide to the frequency-dependent onset of non-linearity, in the drag of
a sinusoidally oscillating cylinder at peak Reynolds numbers between 0)01 and 10.

3.5.2. Asymptotic power laws in the low-amplitude limit

Based on the theoretical studies of Wang [8] and Holtsmark et al. [9], together with the
directional symmetry of the present problem (which eliminates even harmonics), one might
conjecture the asymptotic amplitude dependence of each force harmonic to be of the form

f
n
JKn#O (Kn`2) (n"1, 3, 5,2), (16)

as K tends to zero with S "xed. This would imply h
n
&Kn~1 for n*3, and Dh

1
!h

a
D&K2.

The data in Table 1 do not cover su$cient dynamic range to test this hypothesis, because of
the noise #oor already mentioned; however, that the h

3
results for S"10~3 (points 9, 16, 18,

19 in Figure 1) clearly show a tendency to approach the expected asymptotic K2

dependence for small K, and there is a similar tendency in the Dh
1
!h

a
D results. Figure 5

provides further support, in panels 1}3.
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4. APPLICATION TO NON-LINEAR SOUND ATTENUATION IN A FIBRE BLANKET

The propagation of small-amplitude sound waves transverse to the "bre direction in
a #uid-saturated "bre blanket can be described, in the high-porosity limit, by the model out-
lined in Appendix C. Here the individual "bres are replaced by sources of heat and momentum
distributed in the surrounding #uid. In order to quantify the exchange of heat and
momentum between the "bre skeleton and the #uid, each "bre is represented as an isolated
cylinder of in"nite length; the background 2-D temperature and velocity "elds around each
"bre are those associated with sound propagation in the blanket, and are equated to the
spatially averaged #uid temperature and velocity over a region containing several "bres.

The drag non-linearity described in section 3 can be included in an ad hoc way in this
linear propagation model, by applying a factor (1#e

1
) to the linear drag impedance, z

f
, for

a single "bre as given in equation (C7). Both the dimensionless impedance, Z
rel

, and the
increase in attenuation coe$cient, *a, can be estimated in this way, for the fundamental
frequency component of an initially sinusoidal plane acoustic wave propagating in the
blanket at high intensity. Note that Z

rel
is required in order to convert the velocity

amplitude parameter K into a sound pressure level in the blanket; typically, DZ
rel

D varies
between 1)2 and 2)5, for the air-"lled blanket modelled in reference [13].

This approach has been used by the "rst author [13] to interpret the experimental data of
Kuntz and Blackstock [3], for plane-wave propagation in a batted Kelvar'29 air-"lled
"bre blanket ("bre diameter 12 km, porosity 0)980). The low-amplitude measurements of
phase speed and attenuation in reference [3] were quite well predicted by the linear model
between 500 Hz and 2 kHz. When the non-linear correction procedure described above was
applied, the predicted increase in attenuation rate at high sound pressure levels (typically
10}30% at 1 kHz, for levels of 150}160 dB re (20 kPa)2) was at least of the right order of
magnitude. It should be noted that the model used for calculating "bre drag is realistic
only if the "bre spacing is larger than the viscous penetration depth d, and this prevents its
application to the blanket in reference [3] at frequencies below 500 Hz; at this frequency,
the ratio of the typical "bre spacing to d is 0)8.

5. SUMMARY AND CONCLUSIONS

1. A two-dimensional non-linear viscous #ow code has been used to calculate the
unsteady drag on a transversely oscillating circular cylinder. For sinusoidal motion,
the non-linear drag response is limited to odd harmonics of the driving frequency.

2. The oscillatory Reynolds number R, based on the peak velocity and the cylinder
diameter, was varied between 0)01 and 10; in this range the #ow remains laminar.

3. The computed force harmonics are presented in dimensionless form as a function of
a dimensionless oscillation amplitude K and a dimensionless frequency S. As the
amplitude parameter K is reduced with S held "xed, the fundamental component of
the force converges to the linearized analytical solution (Appendix A) to better than
1 per cent.

4. As K is increased with S held "xed, higher order odd harmonics appear in the drag
force, and the fundamental amplitude departs from its linear value. The e!ect on the
fundamental reaches about 1 per cent once K2S exceeds 1; details are given in Figure 5.

5. Quasi-steady drag behaviour is approached as S is reduced, for a "xed Reynolds
number. The numerically computed fundamental component converges to within
about 5 per cent of the quasi-steady approximation when the ratio K2S ("R2/S)
exceeds 104.
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6. The conclusions summarized above are based on an incompressible-#ow model. The
validity of the model requires that both the Helmholtz number N and the peak Mach
number, M"KN, be much less than 1. The peak Reynolds number, R"KS, is
required to be of order 10 or less, in view of (2) above.

7. The non-linearity threshold K2S"1 corresponds to placing the cylinder in a plane
progressive wave sound "eld incident normal to the axis, with sound pressure levels

¸
p
"133#10 log

10
F, dB re (20 kPa)2 (in air),

¸
p
"219#10 log

10
F, dB re 1 kPa2 (in water),

(17)

where F is the frequency in kHz.
8. In view of conclusion (7), the audio-frequency absorptive properties of air-"lled "brous

materials should begin to be a!ected by non-linearity at sound pressure levels of
around 140 dB. For quantitative predictions, based on preliminary results from the
present model, see reference [13].

9. When a long cylinder is placed in a single-frequency plane progressive wave "eld, use
of the quasi-steady approximation to calculate the force on the #uid at the driving
frequency is not valid at low sound pressure levels. The approximation is valid only in
the strongly non-linear regime corresponding to K2S"ov2

max
/uk"103}104, i.e., at

levels 30}40 dB higher than those given in equation (17).
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APPENDIX A: LINEARIZED THEORY FOR UNSTEADY DRAG

Stokes [1] solved the linearized incompressible problem for arbitrary S in series form in
1851; a more accessible account, using modern cylinder function notation, is published in
reference [2]. The Stokes solution (summarized below) was generalized by Ray [14] to
cylinders of elliptic cross-section, oscillating parallel to either axis of the ellipse. It was also
generalized by Chen et al. [15] to describe the drag on a transversely oscillating circular
cylinder, surrounded by a "xed outer cylinder with a uniform #uid-"lled gap.

When a cylinder oscillates in an unbounded viscous #uid, with transverse velocity
v(t)"ReMvL e+utN, it applies a time-dependent force to the #uid that can be calculated
analytically in the limit DvL D"v

max
P0. The force f (t) per unit length is given by

f (t)

kv
max

"ReMH
1
e+utN, (A1)

H
1
"j

n
4

S#4nz C
J
1
(z)!jY

1
(z)

J
0
(z)!jY

0
(z)D . (A2)

Here S is the dimensionless frequency de"ned in equation (2) of the main paper, and

z"1
2
(!jS)1@2"1

2
(1!j)(1

2
S )1@2. (A3)

In the high-frequency limit SPR, the complex force amplitude H
1

is dominated by the
"rst term in equation (A2), which corresponds to the inertial loading force. At the opposite
extreme, as SP0, equation (A2) is represented asympotically by

H
1
+j

n
4

S!
4n

1
2
lnS#ln1

4
c#j n

4

(SP0), (A4)

where ln c is the Euler}Mascheroni constant: thus c"1)7810722.
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APPENDIX B: NUMERICAL METHOD

The #ow was started from rest by giving the cylinder a transverse velocity

v(t)"G
0 t(0;

v
max

cos ut t*0 H . (B1)

A two-dimensional time-marching code, based on the boundary element method (BEM),
was used to calculate the unsteady #ow "eld. The force on the cylinder was deduced at each
step from the surface pressure and viscous-stress distributions. The numerical scheme is
described in detail in reference [16]; a brief summary is as follows.

The Navier}Stokes equation for incompressible two-dimensional #ow is "rst expressed
as an integral equation for the #uid velocity vector u, with the linearized Oseen operator on
the left-hand side and non-linear terms on the right. The time-domain Green function for
this operator is derived in reference [17]. Convolution in time and the two space dimensions
yields the solution for u, from which the pressure and viscous stresses can be determined.
Numerical implementation as a boundary element method (BEM) requires a similar
discretization process to that used in a singularity distribution panel method. Viscous
panels are distributed over the surface of the body and into the #uid domain, where the
non-linear terms are included by regarding them as volume-distributed sources in the
equation.

In applying the BEM code to the oscillating cylinder problem, careful attention was paid
to (1) computational speed and accuracy, and (2) agreement with available benchmarks.
Benchmark comparisons are shown in sections 3.2 and 3.3 of the main paper; the steps
taken to ensure the required accuracy at minimum computational cost are described
below.

Computational accuracy requires, in principle, that the dimensionless time step *q
should be small; the #ow simulation should run for many cycles to establish a steady state;
the BEM mesh should be "ne enough to resolve all length scales of the unsteady #ow; and
the mesh should extend far enough from the cylinder to capture the contribution of the
non-linear volume-distributed sources (#uid domain terms).

In order to address the "rst two points above, a series of numerical experiments
was run for the test case K"103, S"10~3 using an approximate version of the code
(with the #uid domain terms removed). The number of points per cycle, n

P
"(*q)~1, and

the total number of cycles, n
C
, were both varied systematically, and in each case

the force-harmonic amplitudes were based on the "nal cycle of data. The aims were to "nd
what combinations of (n

P
, n

C
) yielded convergence of the "fth-harmonic force amplitude to

within 2 per cent of its limiting value; and to "nd which point on the resulting n
P

versus n
C

curve corresponded to the shortest run time. The "fth-harmonic amplitude was chosen as
the criterion in order to focus on the non-linear drag response; the reference value for
convergence was based on (n

P
"432, n

C
"18). Note that symmetry requires the even force

harmonics to be zero, provided the #ow does not exhibit chaotic behaviour; no such
behaviour was observed, and the calculated even harmonics were at the level of numerical
noise.

Results from this preliminary study are shown in Figure B1. For each of the
odd-harmonic amplitudes (n"1, 3, 5, 7), percentage error contours are plotted in the
(n

C
, n

P
) plane. Higher odd harmonics were too small to capture numerically with

the precision available. Based on the criteria above, the optimum combination (n
P
"144,

n
C
"3) was adopted for all the non-linear drag calculations presented in section 3 of the

main paper.



Figure B1. Percentage error contours in the n
P
versus n

C
plane, for the odd order force-harmonic amplitudes. All

errors are relative to n
P
"432, n

C
"18.
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BThese equations are corrected versions of the ones in reference [13]; the changes are of relative order / and
have been introduced so that equations (C2}C4) form a consistent O(/) approximation. For the application in
reference [13], the e!ect of the alterations is insigni"cant.

APPENDIX C: LINEAR ACOUSTIC MODEL FOR PLANE WAVES
IN A LIMP FLUID-SATURATED FIBRE BLANKET

The equations below are based on a Biot model in which the #uid pressure p and velocity
u
f

are spatially averaged values, associated with the macroscopic acoustic propagation
mode in the two-phase medium (the characteristic wavelength is assumed large compared
with the typical "bre spacing). The actual heat and momentum transfer rates from the
skeleton to the #uid are represented by spatially smoothed source distributions applied to
the #uid.

The sound "eld consists of single-frequency plane waves travelling in the x direction, with
propagation factor e+(ut~kx); the complex wavenumber k is related to the phase speed v

ph
and

attenuation coe$cient a by

k (u)"(u/v
ph

)!ja. (C1)

Starting from the linearized equations for #uid momentum, entropy, and volume
(continuity), the following dispersion and impedance relations may be derived for sound
propagation in a limp porous material of porosity P close to unity (1!P"/@1):B

C2"A
P#cyN

eff
P#yN

eff
B A

P#zN
eff

P#DzN
eff
B A

1

1#DzN
eff
B , C"

k (u)

u/c
f

, (C2)
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Z
rel
"

1

PC A1!
D

/
zN
effB

~1

A
P#zN

eff
1!D B , Z

rel
"

p

o
f
c
f
(u

f
!u

s
)
. (C3)

These yield the dimensionless complex wavenumber C and the dimensionless characteristic
impedance Z

rel
, for plane waves in the blanket. Symbol D denotes the ratio o

f
/o

s
.

Subscripts f, s denote the #uid and solid components; o, c are density and sound speed; u
f

is
the spatially averaged #uid velocity, u

s
is the "bre velocity, and p is the acoustic pressure.

Quantities yN
eff

, zN
eff

are normalized e!ective impedances (thermal and mechanical) for the
solid skeleton, de"ned such that the heat and momentum transfer rates from the skeleton to
the #uid per unit total volume of blanket are

Q"!juo
f
C

pf
yN
eff

¹
f

and F"!juo
f
zN
eff

u
f
!DzN

eff

Lp

Lx
. (C4)

A sparse-array model of #uid}"bre interaction, summarized below in equations
(C5}C7), is used to express the equivalent heat and momentum source terms in
terms of acoustic variables. The e!ective impedances yN

eff
and zN

eff
in this model are

given by

yN
eff

"/NAC!

nx@2
y
f
B, zN

eff
"/NAD!

nx2

z
f
B , (C5)

where y
f
and z

f
are normalized impedances that give the heat and momentum transfer rates

from an individual "bre; they are de"ned by q"i
f
y
f
(¹

s
!¹

f
) and f"k

f
z
f
(u

s
!u

f
). Here

q, f are the rates of heat and momentum transfer to the #uid per unit length of "bre, and ¹
s
is

the "bre surface temperature. For a single cylindrical "bre of in"nite length and diameter
d in an unbounded #uid, y

f
and z

f
are given by

y
f
"2nx@H(2)

1
(x@)/H(2)

0
(x@), x@"J!1

4
jSPr, (C6)

z
f
"n[!x2#4xH(2)

1
(x)/H(2)

0
(x)], x"J!1

4
jS . (C7)

Here H(2)
n

is the outgoing-wave Hankel function, S is the Stokes number ud2/l
f
, and Pr is

the Prandtl number C
p
k/i of the #uid. Other symbols used above are C"thermal capacity

ratio (oC
p
)
f
/(oC

p
)
s
, C

p
"constant-pressure speci"c heat, c"speci"c-heat ratio of #uid,

i"thermal conductivity.
Note that the use of C and D in equations (C2}C5) is a simpli"cation, based on

neglecting variations in temperature through each "bre, and treating the skeleton as
limp. Also, compression of the "bre material has been neglected in deriving equations
(C2, C3). To allow for transverse temperature gradients in a cylindrical "bre, C is
replaced by

C@"1
2
b[J

0
(b)/J

1
(b)]C, b"1

2
dJ!juo

s
C

ps
/i

s
. (C8)

To allow for "nite skeleton sti!ness, D is replaced by

D@"D/(1!C2<2), <"c
skel

/c
f
; (C9)

here c
skel

is the in vacuo longitudinal wave speed of the skeleton.
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APPENDIX: NOMENCLATURE

C
D

drag coe$cient of cylinder
c sound speed of #uid
d diameter of cylinder
f (t) force applied to #uid per unit length of cylinder
H

n
complex dimensionless harmonic amplitude

h
n

dimensionless magnitude DH
n
D

j J!1
K oscillation amplitude parameter, equation (8)
¸
p

sound pressure level
M Mach number v

max
/c

N Helmholtz number ud/c
n harmonic number
P porosity
R oscillatory Reynolds number, equation (1)
R

mean
steady #ow Reynolds number

S frequency parameter, equation (2)
t time
U #uid velocity at in"nity
u(x, t) #uid velocity "eld
V rigid-body velocity
v(t) oscillatory cylinder velocity in stationary #uid
v
ph

phase speed

a attenuation coe$cient
c 1)781 0722
e
1

Dh
1
!h

a
D/h

ad viscous penetration depth, J2l/u
m cylinder displacement
j acoustic wavelength
k viscosity of #uid
l kinematic viscosity, k/o
o #uid density
p R

mean
/4

q dimensionless time measured in cycles
/ volume fraction (1!P) occupied by "bres; arbitrary function
u angular frequency

Subscripts

a analytical value given by linearized theory
max peak value of oscillatory quantity
n harmonic order
R value in far "eld
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